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ABSTRACT

A finite birth-death process n(t), t > 0, with
density dependent birth-death rates and reflecting barriers
is a model for a redundant repairable system consisting of
N identical computers and repalr crews, where n(t) is the
number of computers in operation at time t. The transition
probabilities of thils process are calculated together with its
asymptotic distribution. The transition probabilities are
then used to derive a formula for the Laplace transform of
the distribution of the first time to system failure.
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suBlect: A Birth-Death Process Associated oate: March 4, 1968
With A Redundant Repairable System -
.Case 101 froMm: G. R. Andersen

TM-68-1033-1

TECHNICAL MEMORANDUM

INTRODUCTION

We will consider a system composed of N computers
together with one repair crew assigned to each computer. It
i1s supposed that all N computers are in operation at time
t = 0 and that the failure times of the N computers are inde-
pendent, each distributed according to an exponential law with
mean 1/x, » > 0. If a computer fails it is transferred to a
state of repair. It is assumed that the repair times of the
N computers are independent and that each is exponentially
distributed with mean 1/u, u > 0. When a failed computer is
repaired it is returned to the operational state. The detec-
tion of any change in state (operational or nonoperational) is
assumed perfect and the switching between these states is
assumed to be instantaneous.

We will say that this system 1s in the state i at time
t, if exactly 1 computers are in operation at time t, (i=0, 1,
..., N). If we suppose that each of the N computers performs
the same task, a system failure occurs (for the first time) at
the first instant in which the system is in the state zero.
Since we do not suppose that the zero state is absorbing,* the
system returns to the state 1 after a random waiting time¥*#¥ and
then continues its random evolution in time as if it has started
from the state i = 1 at time zero.

Thus, if n(t) denotes the state of the system at time
t, it is the object of this memorandum to determine the prob-
ability distribution of n(t) for each t > 0 together with the
transition probabilities of the process. These are given in
section 2 along with the asymptotic (stationary) distribution
of the states of the system.

This asymptotic distribution was used by J. J. Roechio
[4] as part of an extensive reliability study concerning the
above described system.

¥This case was treated by I. D. Nehama [3].

¥¥The waiting time is exponentlal with parameter 1/Nu.
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The remainder of the memorandum is either directly or
indirectly concerned with finding the probability distribution
of the first passage of the system from the state N to the state
i (1 < N). Some explicit formulas are given for the Laplace
transform of the first passage from N to zero state and from N
to the state 3.

After this memo was written, the results of S. Karlin
and J. L. McGregor were found in the book by R. E. Barlow and
E. Proschan [5]. Karlin and McGregor [6] give an integral
representation of the transition probabilities of birth-death
processes which involve a sequence of polynomials and a positive
regular measure on (0, »). In the problem under consideration
here the polynomials are the Krawtchouk polynomials; the measure
is induced by the binomial distribution and the results correspond
exactly to those given in section 2 (equations (2.7) and (2.9))
of this memo [5; p. 145]. The methods are, however, entirely
different--the main tool used here being the well-known prob-
ability generating function.

1. The Transition Probabilities

Let Pij(t) denote the probability that the system passes

from the state 1 to the state j during a time interval of length
t; that 1is,

(1.12) Pij(t) = P{n(t+t) = J|n(x) = 1}*, 1,5=0,1,...,N; £,720.

Then the system described in the introduction implies
that
/

Pyypp(h) = (N-1)phtot(h), i=0,1,...,N-1

Pyy_1(h) = 12 + o(h), 1=1,2,...,N

(1.2) ¢ Py 3(n) =1 - (4 +(N=1)u) h + o(h), 1=0,1,2,...,N,

Pij(h) = o(h) if j % i1-1, or i, or i+l, as h = 0 and

, if i=]

P,.,(0)
1J 0, if 145 .

¥The stationarity of the transition probabllities is a
consequence of the fact that the failures and repailr distribution
are exponential.
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For completeness, we set

- _ >
Py,n+1(B) = 0 and Py ,(h) = 0 for all h Z O.

The stochastic process {n(t): t>0} is therefore a

finite birth-death process with reflecting barriers at the
states 0 and N and density dependent birth and death rates.
It 1s a particular case of a continuous time parameter; finite
state Markov process with stationary transition probabilities
and, as such, most of the basic mathematical facts concerning
this process can be found in the book of Kai Lai Chung [1].

Using the system of infinitesimal transition
probabilities given in (1.2), it is well known that, for each
i (i=0,1,...,N), one can obtain the following set of N+l
differential equations:

Pio(t) = —NuPio(t) + AP, (%),

11
Pig(t) = -NaP,(£) + P, ;(t), and
(1.3)
Plo(t) = —(Kx+(N=-K)u)P () + u(N-K+1)P,p 1(t) + (K+I1)AP,y ()

for XK = 1,2,...,N=1; t>0 .

The solution of (1.3), for each i=0,1,...,N, is
obtained in section 2 using Pij(o) = Gij' A basic assumption

stated in the introduction required that all N computers were
in operation at the time t=0. Hence, the distribution of n(t)
is given by

(1.4) P(n(t)=K) = PNK(t), K=0,1,...,N; t 2 0

2. The Solution of (1.3) Using Probability Generating Functions

For each 1, 1=0,1,...,N let Mi be the probability
generating function of {PiK(t): K=0,1,v..,N}. Then
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N
(2.1) M (s,t) = z: SKPiK(t), t20, [S| £ 1.
K=0

By differentiating Mi with respect to t and using
(1.3) we obtain the following partial differential equation:

aM, (S,t)

aM, (S,t)
3t '

(2.2) =3

+ (uS+r)(S-1) = uN(S-1) Mi(S,t) s

subject to the 1nitial conditions

(2.3) M,(8,0) = st

for each 1, i=0,1,...,N.

For each i, the solution* 1s given by

(2.1) M, (5,8) = (qp(t)+py(£)8) (g (B)4p ()N |

where
po(t) = o + Be_(x+u)t9 pl(t) = a(l—e_(l+U)t)
(2.5)
and
A
(2.6) ‘ a = ;%; > B=am -

¥The derivation is given in Appendix I.
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It follows immediately that PiK(t) is the coefficient

of s¥ in equation (2.4). Before we write down the general result,

let us note that when i=N, the right-hand side of (2.4) is just

N
(x) Do) ag (t) st .
K=0

Hence, from (l.4) we obtain the distribution n(t):
(2.7) P{n(t)=K} = (§) pp(t) aqp (t)

— (u+Ae_(A+u)t)K (l—e_(}"ihu)t)N—K

K=0, 1,..., N.

Therefore, the distribution of n(t) is binomial with
parameters N and po(t) for each fixed t>0. It is clear that the

process n(t) 1is nonstationary; however, passing to the limit in
(2.7) we find that

lim

fboo P{n(t)=K} = Dy (k=0,1,...,N)

3

where

k.N-k
(2.8) o = (Ny LA __
k k (u+A)N

The finite sequence {po, Pys o+ pN} then represents

the stationary asymptotic distribution of the system referred
to in the introduction. The significance of the numbers Py
will be made clear in the next section.
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Returning .to equation (2.4) we easily find that

K
(2.9) P, (t) = 2: (Ezi)(i)pg(t)qo—r(t)pl-r(t)qg-i-k+r(t)

r=0

where, as usual, the binomial coefficients are set equal to

zero when the lower factor is less than zero or greater than
the upper factor.

The complete probabilistic structure of the process
n(t), t > 0, is now known, in that the Joint distribution,

P {n(tl) =17, .0, n(tn) = in} s

can be calculated explicitly for any time points t1<t2<...<tn

and states 195 «ovs in (n=1,2,...) by using equations (2.7),
(2.9) and the Markovian property.

3. A Related Process

Let C, (t) be the stochastic process obtained from
n(t) by setting

1, if n(t) =k
(3.1) ¢, (¢) =
0, if n(t) # k

Then it is easily shown that the integral
T

(3.2) Zk(T) =-jr Ck(t)dt, T>0
0

exists in the quadratic mean and so defines another stochastic
process {Zk(t): t > 0}.
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In an obvious sense, Zk(t) represents the length of

time that the process n(t) is in the state k, if the system has
operating for T units of time. That is, for a particular
realization of the process n(t), Zk(T) is the sum of the lengths

of those subintervals of (0,T) during which the system is in the
state k.

Now, using (3.2), it is clear that

T
(3.3) EZ, (T) = j( P{n(t)=kl}dt
0

Hence, since P{n(t)=k} -+ P> We have that

EZk(T)
—T— > P () .

(3.4)
In fact, it can be shown [3] that 2, (T)/T converges
stochastically to be constant Py Thus, since EZk(T) is the

mean length of time¥* that the system is in the state k, during
the time interval (0,T), p, (k=0,1,...,N) should be interpreted

as the average mean length of time that the system will spend
in the state k, if the system operates for a "long time".

It is conceivable then that the quantity EZk(T)/T

might be of some use in describing the availability of the
system for relatively short time periods of length T. For
example, if k=0, then from equations (2.7) and (3.3), we
obtain

¥The "mean lemgth of time" does not refer to a time average.
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T

EZ . (T) -

-k o -
0

~ . -(x+u) (N=-3)T
N N-j (1-e
> () (-1) GO (R=3)

(3.5)

il
~~
>

as the average mean length of time that the system will be
inoperative during an interval of length T if the system starts
from the state N. This quantity is considerably less than Py

for small values of T; in fact, it is less than qo(T)
probability of being in the zero state at time T and qO(T) < Pg-

k., PFirst Passage Times

We now define a random variable UNE whose value is

the time of first passage from the state N to the state i.
That is,

(4.1) = inf{t: n(t)=i, n(0) =N} , 0 21 <N

N1

Let FNi
heuristic argument¥* leads to the relation:

be the d.f. of this random variable. Then a simple

t
(4.2) Pyi(t) = J( Py (t=-8) dF,;(s) ,
0

where P, and P,. are given by equation (2.9).

Ni ii

¥For the proof see [1], page 196 or page 205.
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Hence, taking the Laplace transforms of both sides
of (4.2), using the convolution theorem and the fact that

\
FNi exlsts, we obtain

L(Py,) (s)
(4.3) LR ) (8) = rpyrey 5 S > 0.
il

For example, for i=0 it is easily seen¥* that
(4.4) L(Fjg) (8)

_ NN

N

(-u)NN!+ }: (E)(—U)N—k(N—k)!(s+NA)(S+(N—l)A)...(s+[N—k+1]A)
K=1

where A = u+x.¥¥

Formal inversion of (4.4) yields the density function
of the first passage to zero from state N. Computationally, this
should not be difficult for fixed values of N, » and u. But if
there is a closed form solution, I have not found it.

However, as is well-known, certain results can be obtained
from the Laplace transform. For example, the mean-time-to failure
myo from the state N to the state 0 is just the Laplace transform

of l—FNO evaluated at the origin. That is, since

1—sL(FNO)(S) ) J(m o5t (l_FNO(t))dt
0

S

and

sL(FNO) = L(Fﬁo)

#For the proof see Appendix II.

#%¥This result is also contained in [3] although the methods
used are quite different.




BELLCOMM, INC. - 10 -

we find that

N
(oM ivea ) D (k) 1 ()N Re(u-Eh
_ k=2
(4.7) myq = N
(=) VN4 E: (E)(-U)N_k(N—k)!AkN(N-l)...(N-k+l)
k=1

where A = u+a.

An interest has been expressed in the d.f., FN3’ of

the first passage time from the state N to the state 3.¥ We
can proceed as before with 1=3. However, the computations are
very much more involved and would have to be carried out in
specific cases. In an effort to minimize these difficulties,
at least for small values of N (e.g., N=5) we introduce the
"first exit time from the state N":

py = Infit: t > 0, n(t) # N} .

It 1s well known that oN is exponentially distributed

with mean 1/NA. It then follows (c¢.f., Chung [1]) that we can
write

t
(4.8) Fy3(t) =f (1-e" M) ar ()
0

where, 1n our case, RN3 is just the 4.f. of the first passage
time from the state N-1 to the state 3 and so satisfies

(4.9) ' | Pyo1 3 = P33 *# Rys -

¥This question was raised by J. J. Rocchio and was motivated

by changes introduced in the basic model.
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Hence, 1n terms of Laplace transforms

L(FN3)(S) = m)- L(RI{I3)(S)

where L(Rﬁ3) satisfies

L(Py_, 3)(s) = L(P33)(s) L(Ry3) (s) .

Some computations were made with N = 5, but are not included
here because of the cumbersome nature of the formula. If there
1s any Interest in this formula, it may be obtained from the

author.
1033-GRA-Jr . R. Andersen
Attachments

References

Appendices I - II
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APPENDIX I

Consider the partial differential equation (2.2):

aMi(s,t) aMi(s,t)
(1) —=t— t+ (us+1)(s-1) 53
where
(11) M, (s,0) = s’

i

for each i, i=0,1,...,N; |s] < 1.

The auxiliary equation

ds dMi

(ase)(s-1) - 4t = N (s-1DM

yields the following two solutions:

us+ e(X+u)t

) = constant

and

Mi(s,t)(uS+A)-N = constant

= uN(s—l)Mi(s,t)

The general solution is then known to be of the form

(111) Mi(s,t)(us+x)'N - f(;EIA (At

for some function f.
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Using (ii) we see that

1
+A S
r(EETR) =
S—

1 (us+A)N

for |s| < 1. Setting £ = (us+r)/(s-1) we find that

(1v) p(e) = (e TCeon)
(g(uta))N

Combining (iii) and (iv) we obtain

-(u+r)t -(u+x)t]N-i

i
] [us+r=(us=-2)e
[u+x ]N

Mi(S,t) = [US+)\+(>\S—A)6

This is equivalent to equation (2.4).
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APPENDIX II

From equation (4.3) we have that

L(Pyo) (5)

(P >8>0

(1) L(FL ) (s) =
| NO 00/\S

Using (2.7) we have

-st
f e PNO(t)dt
0

® N
BNI e St (1_e7hty gt
0
l s
; N 5 5
1 = %[ yA (l—y)Ndy
- 0

where A = p+x and B = A/(u+1r)

L(Py,) (5)

Since the right-hand side of the last equation is a
Beta function we find that

N r(%)l"(N+l) N N

B _ B N! A
(11) L(Py)(s) = r(SreD) ~ s(s+A) ... (s+NA)

Similarly, from equation (2.9) with 1=0, k=0 we obtain

L(P,q) (s) =[ e 5V (grae Aty gt
0

where A = p+2, B = 1l-a.
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It follows that

VK (vt
s(s+A)...(s+(N=-k)A)

N
(111)  Lpy(s) = Y
=0

Combining (i), (i1) and (iii) we obtain

N

1 — N! 2
L(FNO)(S) = N

(=) N1+ }: (ﬁ)(-u)N"k(s+[N-k+1]A)...(s+NA)(N-K)z
k=1

As an example, we note that for N = 2

Iy 2 -%(u+x)t
1 = f——————“ﬂ
u +6AutA

if t > 0.



